Unit 1 - 1 The Straight Line							
The distance formula $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ derived using Pythagoras' Theorem.	Applications: Calculating length of a line Useful for showing triangles are isosceles or equilateral Use to show that two sides of a shape have the same length. Use in circles to calculate radius or diameter						
The mid-point formula $M\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$	This gives the mid-point M of $A(x_1, y_1)$ and $B(x_2, y_2)$. This is a simple average of the co-ordinates of A and B.						
The gradient formula $m_{AB} = \frac{y_2 - y_1}{x_2 - x_1}$	$gradient = \frac{change \text{ in } y \text{ from A to } B}{change \text{ in } x \text{ from A to } B}$ The gradient of AB is denoted by m_{AB}						
Linking the gradient to the tangent $m_{AB} = \tan \theta$	where θ is the anti-clockwise angle from OX to AB For a line sloping down from left to right, θ is obtuse angle, tan θ is negative and so gradient is negative						
Parallel and perpendicular linesParallel:gradients are equalPerpendicular:product of gradients = -1	If the gradients of two perpendicular lines are m ₁ and m ₂ , then $m_1 = -\frac{1}{m_2}$ if $m_1 = \frac{a}{b}$ then $m_2 = -\frac{b}{a}$						
Lines parallel to OX and OY gradient = 0 gradient = undefined	The gradient of a line parallel to the x-axis is 0 The gradient of a line parallel to the y-axis is undefined						
Applications of: $m_1 \times m_2 = -1$	 Finding gradients and equations of perpendicular lines Finding equations of tangents to circles (perpendicular to radius) Showing that an angle is a right angle. Checking out properties of quadrilaterals e.g. rhombus – diagonals bisect at right angles square, rectangle have corners at right angles Demonstrating symmetry. Finding equations of parallel and perpendicular lines. 						
Equation of a straight line y = mx + c where m = gradient and c = y-intercept	If you have the equation in this form, then it is easy to sketch the graph: You know the y-intercept: c You know the gradient: m						
Collinearity If three points lie on the same straight line, they are said to be collinear .	To prove that 3 points, say P, Q and R are collinear – (i) Show that the gradients PQ and QR are the same (ii) State that the two line segments PQ and QR have a common point Q Failure to state (ii) will cost you marks !!!						
Re-arranging equationsEquations of straight lines come in many forms: $y = 4x - 5$ $y + 4x = -5$ $y + 4x + 5 = 0$ $2y + 8x + 10 = 0$ are all the same equation.	 Use the simple rules of algebra: Change side, change sign Multiply both sides by a constant Divide both sides by a constant 						

Unit 1 - 2.1	Composite and Inverse Functions				
Definition of a fun A function is defined a rule which links ea one member of B. Notation: y = f(x) or $f: xDomain and RangThe domain of a funvariable the functionThe range of a functvalue of the function$	Action I from a set A to a set B as ch member of A to exactly \rightarrow y (f maps x to y) ge action is the input – the operates upon. ion is the output – the	Domain Range $f(x) = 3x$ or $f: x \rightarrow 3x$	$\int_{1}^{2 \cdot 4} \int_{1}^{4 \cdot 4} $		
Domain of h(x)= We write this as: domain of h(x) is { and: domain of k(x) is: You should always dividing by zero.	$\sqrt{x} \text{ and } \mathbf{k}(\mathbf{x}) = \frac{1}{x-1}$ $\{\mathbf{x} : \mathbf{x} \in \Re : \mathbf{x} \ge 0 \}$ $\{\mathbf{x} : \mathbf{x} \in \Re : \mathbf{x} \ne 1 \}$ be aware of the danger of	The largest domain of $h(x) = \sqrt{x}$ is the sizero, since you cannot take the square in The largest domain of $k(x) = \frac{1}{x-1}$ is the size of the solution of the size of th	set of real numbers greater than or equal to root of a negative number. he set of real numbers except x = 1 or zero ~ you cannot divide by zero).		
Undefined function Functions may be un values of x ~ in p • where you we square root o • where you we	ons defined for particular articular: ould need to take the f a negative number ould need to divide by 0	$f(x) = \sqrt{(x-1)}$ is undefined when x < 1 (requires square root of negative number) $h(x) = \frac{1}{x-3}$ is undefined when x = 3 (results in division by zero).			
Related Functions Given $f(x)$, what is for To find $f(x+1)$, simply replace the 'x and simplify.	s (x+1) or $f(x^2)$ or $f(2x)$ etc. s' in $f(x)$ with 'x+1' etc.	Example: $f(x) = 3x + 1$ what is Solution: $f(x+1) = 3(x+1) + 1 \implies 3$: Example: $h(x) = x^2 - 3x$ what is Solution: $h(2x) = (2x)^2 - 3(2x) \implies$ Example: $f(x) = 2x^2 + 3x$ what is Solution: $f(x+1) = 2(x+1)^2 + 3(x+1)$	$f(x+1)$ $x + 4$ $h(2x)$ $\Rightarrow 4x^{2} - 6x$ $f(x+1)$ $\Rightarrow 2x^{2} + 7x + 5$		
Evaluating function Given f(x), what is for To evaluate a function calculate what the var you replace x by 2	ons: (1) or $f(0)$ or $f(-2)$ etc. on $f(x)$ at $x = 2$ (say), ilue of the function is when	Example: If $f(x) = x^2 + 3x - 1$ Solution: $f(-1) = (-1)^2 + 3(-1)^2$ Example: If $f(x) = 3x^3 - 5x + 2$ Solution: $f(a) = 3a^3 - 5a + 2$	Evaluate $f(-1)$ $-1) - 1 \implies -3$ What is $f(a)$ 2		

Unit 1 - 2.1 Composite and Invers	se Functions
Recognising the domain and range of a function Domain: the input Range Range: the output Domain	Domain: Look for the input (the variable in the function $-$ in $f(x)$ the 'x' axis in $g(t)$ the 't' axis). This variable is known as the 'independent variable' since you can choose any value in the domain. Range: Look for the output or value of the function (this is the value of f in f(x) or g in $g(t)$). This variable is known as the 'dependent variable', as once you have chosen a value for x or t then f or g is determined by the function.
Examples of Range and Domain Composite Functions If $f(x) = x - 3$ and $g(x) = x^2$ Then what is $f(g(x))$	y y y y y y y y y y y x y x x y y x y y x x y y x x y y x x y y x x x x x x x x x x x x x
Start from the outside function. $f(\dots)$ replace the 'x' with $g(x)$ So we have $f(g(x)) = f(x^2) = (x^2) - 3$ $\Rightarrow f(g(x)) = x^2 - 3$	Example: $f(x) = x + 2$ $g(x) = 2x^{2}$ Then $f(g(x)) = f(2x^{2}) = 2x^{2} + 2$ and $g(f(x)) = g(x + 2) = 2(x + 2)^{2} = 2x^{2} + 8x + 8$ Example: $f(x) = \frac{x}{x-1}$ find $f(f(x))$ [Hint: replace the x in $f(x)$ with $\frac{x}{x-1}$] so $f(f(x)) = \frac{\frac{x}{x-1}}{\frac{x}{x-1} - 1}$ now simplify to get $f(f(x)) = x$
Functions with inverses An inverse of a function, is a function that 'undoes' the operation of the original function.	Example:If the original function is $f(x) = 2x + 3$ The function takes a number, doubles it and adds 3To undo this – we take the result, subtract 3 and then halve it.
For a function to have an inverse the members of its domain and range must be in one-to-one correspondence.	This means that for: every member of the domain, there is exactly ONE corresponding member of the range and for every member of the range there is exactly ONE corresponding member of the domain i.e. No duplicate values. Look at the following graphs – only one of them has an inverse – can you see which one? $6 \frac{1}{2} \frac{1}$

Unit 1 - 2.1 Composite and Inverse Functions				
Finding inverse functions If a function f which maps A to B has an inverse function which we call f^{-1} , then f takes x to y and f^{-1} takes y back to x So $y = f(x) \iff x = f^{-1}(y)$	NB ⇔ means 'implies and is implied by' ~ each implies the other - a two way process Recall sin ⁻¹ (x), cos ⁻¹ (x) and tan ⁻¹ (x) on your calculator – these are the inverse functions of sin x, cos x and tan x.			
Methods for finding inverse functions				
Method 1: Establish what the function does, then undo	Example: Find the inverse of $f(x) = 4x$ The function multiplied the input by 4, so to undo this we divide by $4 \sim$ hence $f^{-1}(x) = \frac{x}{4}$			
Sometimes it is more difficult to see the inverse:	Example: Find the inverse of $f(x) = \frac{3x-1}{2}$ In this case the number is multiplied by three, one is subtracted, and the result divided by 2. To undo this – start by: multiplying by two $\Rightarrow f^{-1}(x) = 2x$ then add 1 $\Rightarrow f^{-1}(x) = 2x+1$ finally divide by 3 \Rightarrow $f^{-1}(x) = \frac{2x+1}{3}$			
 Method 2: Use the technique: changing the subject of the formula. Summary: Change function to y = Change the subject of the formula Switch the x and y placeholders Put back into function notation – replace y with f⁻¹(x) 	Example:Find the inverse of $f(x) = \frac{3x-1}{2}$ put $y = \frac{3x-1}{2}$ then $2y = 3x-1$ and $2y+1=3x$ then $x = \frac{2y+1}{3}$ ~ the 'x' and 'y' are simply placeholders so switch the 'x' and 'y' labels and change it back to function notation. $f^{-1}(x) = \frac{2x+1}{3}$ This method is much easier and less prone to error.			
Graphs of Inverse functions. The graph $y = f^{-1}(x)$ can easily be found by reflecting the graph of $y = f(x)$ in the line y s	Example: $f(x) = 4x$ then $f^{-1}(x) = \frac{x}{4}$ Note the reflection in $y = x$			
	This technique is useful for sketching graphs of inverse functions, and indeed can also allow us to deduce what an inverse function might be.			

Unit 1 - 2.2	Algebraic Functions a	and Graphs
Completing the so of the quadratic f Method summary: 1. Arrange for the c 2. Form the square coefficient of the 3. Subtract the squa care to include 1 4. then add back the Maximum and m	puare unction coefficient of x^2 to be 1 with an 'x' and 'half the e x term' are of the last term taking brackets e constant term	Example: Complete the square of $2x^2 + 12x - 5$ step 1. $2(x^2 + 6x) - 5$ ensure coefficient of x^2 is 1 step 2. $2(x+3)^2$ forming the square ~ put x first and and half the coefficient of x in last place. step 3. $2\{(x+3)^2 - 9\}$ subtract square of last term and don't forget the brackets ! step 4. $2(x+3)^2 - 18 - 5$ add back the constant term then simplify $2(x+3)^2 - 23$ You can, of course, check by multiplying out: $2(x+3)^2 - 23 \implies 2(x^2 + 6x + 9) - 23 \implies 2x^2 + 12x - 5$ By completing the square, this allows us to find maximum and minimum values
Complete the square the form of: $f(x) = a$ if 'a' is positive then since $(x + p)^2$ minimum value of the when $(x + p)^2 = 0$ Minimum value = q if 'a' is negative the function can be a $f(x) = q + a(x + p)^2$ the term: $a(x + p)^2$ w Maximum value = q	and obtain a function in $(x + p)^2 + q$ is always positive, the le function will be when x = - p manged as: and since 'a' is negative, will be subtracted q when x = - p	by completing the square, this above us to find maximum and minimum values of quadratic functions and the value of 'x' at which this occurs. Example: By completing the square, find the minimum value of $x^2 + 8x + 4$ and the value of x at which it occurs. Solution: $x^2 + 8x + 4 = (x+4)^2 - 16 + 4 = (x+4)^2 - 12$ Minimum value is -12 when $(x+4)^2 = 0$ Minimum value = -12 when $x = -4$
Sketching the gra functions Intersection turning poir axis of sym DO NOT you will be awarded 	ph of quadratic with x, y axes nt metry <u>PLOT</u> the graph ed <u>NO MARKS</u> for plotting	 Method: To sketch the graph of y = f(x) where f(x) is a quadratic function Find the intersection with the y-axis (by putting x = 0) Find the intersection with the x-axis (by putting y = 0) (by solving the equation f(x) = 0 ~ finding the roots) Find the turning point by completing the square (incl. y-co-ordinate) Note the turning point is on the axis of symmetry (half-way between the two roots of the equation ~ step 2) Find y co-ordinate of the turning point by substitution in the equation
<pre>Sketching graphs If you have the graph y = f(x), then you can the graph of a related y = - f(x) y = f(-x) y = f(-x) y = f(x ± a) y = f(x) ± k or any combination</pre>	of related functions n of a function such as n deduce and sketch I function such as:	 Given y = f(x) then: (assuming a > 0 and k > 0) y = - f(x) This reflects the graph in the x-axis y = f(-x) This reflects the graph in the y-axis y = f(x + a) This slides the graph a units to the left y = f(x - a) This slides the graph a units to the right y = f(x) + k This slides the graph k units upwards y = f(x) - k This slides the graph k units downwards These may be combined, for example: y = f(x + a) - k would move graph a units to left then k units down. The + k or - k added onto the end is the last operation to be done Always show the images of any marked points.

Jnit 1 - 2.2 Algebraic Functions and Graphs			
Examples of graphs of related functions			
(-3, 2) (2, 1) (3, 0)	y = f(-x) (3, 2) (-3, 0) (3, 2) (-3, -2) (3, -2) (-3, -2) (-3, -2) (-3, -2) (-3, -2)		
The exponential function and its grap Any function of the form $f(x) = a^x$ where $a > 0$ and $a \ne 1$ is called an <i>exponential function</i> with <i>base a</i> The graph of the function has equation $y =$ Note: In all cases the graph passes throug $(0, 1)$ since $a^0 = 1$ for all values of and the line $y = 0$ is an asymptote the graph $y = a^x$	The graph of the function $f(x) = 4^x$ is shown here $f(2) = 4^2 = 16$ $f(1) = 4^1 = 4$ $f(0) = 4^0 = 1$ $f(\frac{1}{2}) = 4^{\frac{1}{2}} = 2$ $f(-1) = 4^{-1} = 0.25$		
Decreasing and increasing exponential functions For the function $f(x) = a^x$ if $a > 1$ then the function is an increasing function. if $a < 1$ then the function is a decreasing function.	$y = a^{X} $ $a > 1 $ $y = a^{X} $ $a < 1 $ $(0, 1) $ $(0, 1)$		
Sketching graphs of exponential functions Method: The graph must pass through (0, 1)	Example: Sketch the graph of $f(x) = 3^x$ The graph passes through (0, 1) It is increasing, since $a = 3$		
Is it decreasing or increasing (is $a > 1$ or $a <$ Pick a suitable point (e.g. $x = 1$ or $x = 2$) to an idea of the steepness	$\begin{array}{c} 1 \\ get \end{array} \begin{array}{c} Choose \ x = 1 \ so \ f(x) = 3 \\ You \ have \ 2 \ points \ \sim \ (0, \ 1) \ and \ (1, \ 3) \\ You \ know \ it \ is \ increasing \end{array} \begin{array}{c} (0, \ 1) \end{array} \begin{array}{c} (0, \ 1) \end{array}$		
The Logarithmic Function and its Gradients $f(x) = a^x$ has an inverse function $f(x) = \log x$ These are related as follows: $y = a^x \iff x = \log_a y$ The graph of $y = \log_a x$ is the mirror images of the graph $y = a^x$ in the line $y = x$. Note that the line $\mathbf{x} = 0$ is an asymptote to the graph $y = \log_a x$	$y = a^{x}$ $y = x$ $y = \log_{a} x$		

Unit 1 - 2.2 Algebraic Functions a	and Graphs
Special Logarithms $y = a^x \iff x = \log_a y$ $\log_a 1 = 0$ (logarithm of 1 to any base is 0) $\log_a a = 1$ (logarithm of a number to that base is 1)	Using the form: $y = a^x \iff x = \log_a y$ (i) $1 = a^0$ i.e. $y = 1$ when $x = 0 \iff 0 = \log_a 1$ (ii) $a = a^1$ i.e. $y = a$ when $x = 1 \iff 1 = \log_a a$
Sketching graphs of Log functionsUsing $log_a 1 = 0$ and $log_a a = 1$ we can obtain two points on the graph.	Example:Sketch $y = \log_3 x$ $\log_3 1 = 0$ giving point (1, 0) $\log_3 3 = 1$ giving point (3, 1) $y = \log_3 x$ (3, 1)(1, 0)
When plotting $log_a(x - 2)$ or similar Choose a value of x to make $(x - 2)$ equal to 0 Choose a value of x to make $(x - 2)$ equal to a	Example: Sketch $y = \log_2 (x - 3)$ $\log_2 1 = 0$ $\Rightarrow (x - 3) = 1$ so $x = 4$ giving point (4, 0) $\log_2 2 = 1$ $\Rightarrow (x - 3) = 2$ so $x = 5$ giving point (5, 1) Note this confirms our previous knowledge of related functions $y = \log_2 (x - 3)$ is simply the graph of $y = \log_2 x$ shifted 3 units to the right. y = f(x) and the related function is $y = f(x - 3)Note also the asymptote at x = 3$
In all cases use the two special logarithms $log_a 1 = 0$ $log_a a = 1$ Choose values of x as appropriate	Example: A sketch of the graph y = a log4(x + b) is shown. Find the values of a and b (-2, 0) lies on the curve, so $0 = a \log_4 (-2 + b)$ so $b - 2 = 1$, hence b = 3 (1, 5) lies on the curve, so $5 = a \log_4 (1 + b)$, since $b = 3$ $5 = a \log_4 (4)$, now $\log_4 4 = 1$ so $a = 5$ Example: Sketch $y = \log_3\left(\frac{1}{x}\right)$ Choose $x = 1$ $\Rightarrow \log_3 1 = 0$ giving point (1, 0) Choose $x = \frac{1}{3}$ $\Rightarrow \log_3 3 = 1$ giving point (¹ / ₃ , 1) Note that the term $\frac{1}{x}$ results in a decreasing function Consider what happens for large x and small x approaching zero

Unit 1 - 2.3	Unit 1 - 2.3 Trigonometric Functions and Graphs		
Radian measureAn angle of one radithe centre of a circleto its radius. π radi 2π radi	an is the angle subtended a by an arc of length equal dians = 180° dians = 360°	at $ \begin{array}{ccc} $	
Degrees 30 45 60 90 120 135 180	Radians $\frac{\pi}{6}$ $\frac{\pi}{4}$ $\frac{\pi}{3}$ $\frac{\pi}{2}$ $\frac{2\pi}{3}$ $\frac{3\pi}{4}$ π	Changing between degrees and radians Use proportion based on π radians = 180° 1 radian = $\frac{180}{\pi}$ degrees so multiply your radians by $\frac{180}{\pi}$ to get degrees 1 degree = $\frac{\pi}{180}$ radians so multiply your degrees by $\frac{\pi}{180}$ to get radians Note the top line of the multiplier: $x \frac{180}{\pi}$ gives degrees $x \frac{\pi}{180}$ gives radians	
Exact values for s Radians Degrees sin cos tan You should be familiar memorise it, learn how Maximum and m trigonometric fun Look when the What value of Evaluate the ful	$\frac{\pi}{6}$ $\frac{\pi}{4}$ $\frac{\pi}{3}$ $\frac{\pi}{6}$ $\frac{\pi}{4}$ $\frac{\pi}{3}$ 30° 45° 60° $\frac{1}{2}$ $\frac{1}{\sqrt{2}}$ $\frac{\sqrt{3}}{2}$ $\frac{\sqrt{3}}{2}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{2}$ $\frac{1}{\sqrt{3}}$ 1 $\sqrt{3}$ $\frac{1}{\sqrt{3}}$ 1 1 <	Recall the use of Pythagoras and SOHCAHTOA for obtaining exact values for 30°, 45° and 60°. Use a square of side 1 and draw in a diagonal, Use Pythagoras to calculate length of diagonal as $\sqrt{2}$ Hence sin 45° = $\frac{1}{\sqrt{2}}\cos 45^\circ = \frac{1}{\sqrt{2}}$ and tan 45° = 1 Use an equilateral triangle of side 2 units. Draw in the perpendicular from base to vertex. giving 2 right angled triangles with angles of 30° and 60° and each with a base of 1 and hypotenuse of 2. Again use Pythagoras to calculate the altitude as $\sqrt{3}$ Hence sin 30° = $\frac{1}{2}$ cos 30° = $\frac{\sqrt{3}}{2}$ tan 30° = $\frac{1}{\sqrt{3}}$ etc. Look for the symmetry. You must be able to work in radians as well as degrees. • Consider the function $f(\mathbf{x}) = 2 + \cos \mathbf{x}$ • The maximum value of cos x is 1 when x = 0° or 360° (or 0 and 2π radians) • So the maximum value of the function will be $2 + 1 = 3$ • Similarly the minimum value of the function will be $2 - 1 = 1$ when x = 180° (or π radians).	

Unit 1 - 2.3Trigonometric Functions and Graphs				
Angles greater than 90° $\begin{array}{c c} S & A \\ \hline T & C \\ \end{array}$ shows where sine, cosine and tangent are positive.	Recall 'All Sinners Take Care' When considering angles in the 2 nd 3 rd and 4 th quadrants, remember the acute angle is always between the rotating arm and the x-axis . Example: $\sin 135^{\circ}$ related acute angle = 45° ~ $\sin 135^{\circ} = + \sin 45^{\circ} = \frac{1}{\sqrt{2}}$ $\tan \frac{11\pi}{6}$ related acute angle = $\frac{\pi}{6}$ ~ $\tan \frac{11\pi}{6}$ = $-\tan \frac{\pi}{6} = \frac{1}{\sqrt{3}}$			
Sketching Trigonometric Graphs $y = a \sin nx$ $y = a \cos nx$ a = amplitude (max and min values of y) $n = number of waves in 360° or 2\piperiod of the graph is \frac{360}{n} ° or \frac{2\pi}{n} radians$	$a - \frac{1}{1} y = a \sin x$ $a - \frac{1}{2} y = a \sin x$ $a - \frac{\pi}{2} \pi x$ $a - \frac{\pi}{2} \pi x$ $a - \frac{\pi}{2} \pi x$			
Solving Trigonometric Equations All these equations can ultimately be resolved into the form $\sin(\dots) = \text{constant}$ $\cos(\dots) = \text{constant}$ $\tan(\dots) = \text{constant}$ Once you have reached this form, you can generally find 2 solutions using 'ASTC'	Reminder: when you have for example: $\cos \theta = -0.5$ or $\tan \theta = -0.7$ Ignore the negative sign when getting the acute angle on your calculator. Use the negative sign to determine which quadrants the solutions are in. However – first you have to get the equation into this form ! See below for strategies for the different types of equations.			
Type 1: Solve $2 \sin x = 1$ $0 \le x \le 360^{\circ}$ Type 2: Solve $\sqrt{2} \cos \theta + 1 = 0$ $0 \le x \le 2\pi$	Divide by 2 $\Rightarrow \sin x = \frac{1}{2}$ obtain two solutions (30° and 150°) Re-arrange $\sqrt{2}\cos\theta = -1$ hence $\cos\theta = -\frac{1}{\sqrt{2}}$			
Type 3: Solve $\sin 3x = -1$ $0 \le x \le 360^{\circ}$	The range becomes $0 \le 3x \le 1080^\circ$ Now $\sin() = -1$ at 270° but to cover the range we need 270° , $270^\circ + 360^\circ$, $270^\circ + 720^\circ$ solutions are: $x = 90^\circ$, 210° , 330° In general if you have $\sin nx$, $\cos nx$, $\tan nx$ then multiply your range by n			
Type 4: Solve $2\sin^2 x = 1$ $0 \le x \le 360^\circ$	Re-arrange to get: $\sin^2 x = \frac{1}{2}$ Taking square roots gives $\sin x = \pm \frac{1}{\sqrt{2}}$ Note now there are 2 equations to solve and you will obtain 4 solutions. solutions are: $x = 45^\circ$, 135° and $x = 225^\circ$ and 315°			
Type 5: Solve $4\sin^2 x + 11 \sin x + 6 = 0$ $0 \le x \le 2\pi$	A quadratic equation in sin x : Factorising $\Rightarrow (4\sin x + 3)(\sin x + 2) = 0$ reduces to 2 simpler equations. Solutions are: $x = 3.99$ or 5.43 radians Note that sin x + 2 = 0 has no solutions so discard it.			
Type 6: Solve $\sin^2 x - \cos x = 1$ $0 \le x \le 360^{\circ}$	Use $\sin^2 x + \cos^2 x = 1$ (see table right) Replace $\sin^2 x$ with $1 - \cos^2 x$ Now a quadratic in $\cos x$: $1 - \cos^2 x - \cos x = 1$ Re-arrange and factorise: $\cos x (\cos x + 1) = 0$ solutions: $x = 90^\circ$ and 270° or $x = 180^\circ$			
Type 7: Solve $\sin (2x - 20)^\circ = 0.5$ $0 \le x \le 360^\circ$	Range becomes $0 \le x \le 720^{\circ}$ Now $\sin(\dots) = 0.5 \implies$ an acute angle of 30° so we have $(\dots) = 30^{\circ}$ or 150° or 390° or 510° (giving four solutions) This gives four equations: like $2x - 20 = 30$, $2x - 20 = 150$, etc. Solutions: $x = 25^{\circ}$, 85° , 205° , 265°			

Unit 1 - 3.1

Introduction to Differentiation

The limit formula Differentiation relates primarily to the gradient of a graph or function y = f(x)(generally a curve). $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ Q(x + h, f(x + h))A graph is a pictorial representation of a function. P(x, f(x))We define this limit as f'(x) this is known as We are interested in the gradient of a the gradient function or derived function curve (function), because the gradient is a measure of the **rate of change** of the We have differentiated f(x) and obtained f'(x). x+h х function. f'(x) is the derivative of f(x). The gradient of a curve is continually changing as you move along the curve. This is a function that allows us to calculate the The gradient of the curve at point P is defined as the gradient of the tangent to gradient at any point x on the curve. the curve at P. **Example:** Find the gradient on the curve $f(x) = 2x^2 + 3x + 5$ at P(-2, 1) **Calculating the gradient** at a point P (x, y) on the curve y = f(x)Differentiate \Rightarrow f'(x) = 4x + 3 Solution: • Differentiate the function f(x) to get f'(x)Evaluate $f'(-2) = 4(-2) + 3 \implies f'(-2) = -5$ Evaluate function f'(x) at point P(x, y)Gradient at P(-2, 1) = -5**Rules for differentiation:** These rules work for any power of n - positive or negative, whole number or f(x) f'(x)fractional. xⁿ nxⁿ⁻¹ **General Rule:** Put the power in front (multiply), and decrease the power by 1. c (constant) 0 **IMPORTANT:** ax (a is a constant) a You must have the function f(x) as a polynomial, a series of powers of x. a nxⁿ⁻¹ a xⁿ You cannot differentiate fractions, brackets or anything else directly at present. f'(x) + g'(x)f(x) + g(x) $3x^2 + 2x + 1$ 6x + 2**Indices:** Recall rules of indices: Also recall meaning of fractional and negative indices. Rules of indices $x^{-1} = \frac{1}{x}$ $x^{-n} = \frac{1}{x^n}$ $x^{\frac{m}{n}} = \left(\sqrt[n]{x}\right)^m = \sqrt{x^m}$ $a^m x a^n = a^{m+n}$ $x^{\frac{1}{n}} = \sqrt[n]{x}$ $x^{-\frac{1}{n}} = \frac{1}{\sqrt[n]{x}}$ $x^{-\frac{m}{n}} = \frac{1}{\left(\sqrt[n]{x}\right)^m} = \frac{1}{\sqrt[n]{x^m}}$ $a^m \div a^n = a^{m-n}$ $(a^{n})^{m} = a^{nm} = (a^{m})^{n}$ $\frac{1}{2x^{n}} = \frac{1}{2} \cdot \frac{1}{x^{n}} = \frac{1}{2} x^{-n} \qquad \qquad \frac{3}{4x^{n}} = \frac{3}{4} \cdot \frac{1}{x^{n}} = \frac{3}{4} x^{-n}$ Leibnitz Notation: $\frac{dy}{dx}$ or $\frac{d}{dx}((f(x)))$ or $\frac{df}{dx}$ Use Leibnitz or Newtons notation depending upon the wording of the question. Both notations are equivalent. **Newton's notation**: f'(x) or y'(x) or y'

Unit 1 - 3.1	Introduction to Diffe	ferentiation			
Changing functio – or simple index	ns to straight line form form.	Examples: Type 1: $f(x) = x^2 + \frac{3}{x}$ change to $f(x) = x^2 + 3x^{-1}$ to differentiate			
Fractional function either: • express in ind • put into separ	ons: lex notation, or ate fractions	Type 2: $f(x) = \frac{x^4 + 2x^2 + 3}{x}$ change to $f(x) = \frac{x^4}{x} + \frac{2x^2}{x} + \frac{3}{x}$ then simplify to $x^3 + 2x + 3x^{-1}$ (straight line form)			
 Finding the gradient to a curve at P(a, Differentiate to Evaluate gradient 	then to f the tangent b): b) get $\frac{dy}{dx}$ or f'(x) ent function $\frac{dy}{dx}$ at P	Example: Find the gradient of the tangent to $f(x) = 3x^3 - 5x + 2$ at P(2, 1) Solution: Differentiate \Rightarrow f'(x) = 9x ² - 5 Evaluate at P(2, 1) f'(2) = 9(2) ² - 5 = 36 - 5 = 31 Hence gradient of tangent at P(2,1) = 31			
 Finding the equate Find gradient. Find the y coordigiven. Use gradient for <u>y - y₁</u> = m <u>x - x₁</u> = m 	tion of the tangent: ordinate of point if not ormula for equation:	Find gradient by differentiation and evaluation. Find the y co-ordinate of the point by putting x co-ordinate into original equation. Use formula for the equation: $\frac{y - y_1}{x - x_1} = m$ or $y - a = m(x - b)$ Example : Find equation of the tangent to $y = x^2 + 3$ at $x = 2$ Solution : Gradient of tangent is $\frac{dy}{dx} = 2x$ when $x = 2$ gradient = 4 When $x = 2$, $y = (2)^2 + 3 = 7$ Hence equation is: $y - 7 = 4(x - 2) \implies y - 4x + 1 = 0$			
Find point on cur given gradient (sa • Find gradient fu • Put gradient fun • Get y co-ordina	Eve where tangent has a by gradient to be 3) notion by differentiation ction = 3; solve equation. ate from original equation.	Example: Find the point on the curve $y = 2x^2 + 1$ where gradient = 5 Solution: Gradient function of curve is $\frac{dy}{dx} = 4x + 1$ When gradient = 5, $\frac{dy}{dx} = 5$ thus, $4x + 1 = 5$, so $x = 1$ When $x = 1$, $y = 2(1)^2 + 1 = 3$ Hence point is (1, 3)			
Graphs of derived The derived function resulting from differ To sketch the derive Method: Step 1. Mark the z Note sign of zeros. Step 2. Sketch the be below th was negative where the g What will the	d functions a f '(x) is the function entiating f(x) ed function: eros on the x-axis of gradient either side of derived function – it must he x axis where the gradient we and above the x axis gradient was positive – fit ?	Step 1. Locate the point(s) where the gradient of the function is ZERO (i.e. a turning point) – mark these points on the x-axis. Note either side of the point whether gradient is positive or negative Step 2. Sketch the derived function – it must be below the x axis where you deduced the gradient was negative and above the x axis where the gradient was positive – What will fit ? Consider the form of the derived function by differentiation – is it a straight line, quadratic, cubic etc. $ \frac{step 1}{(2, 1)} + \frac{y = f(x)}{(2, 1)} + \frac{step 2}{(1, -1)} + \frac{y = f(x)}{(2, 1)} + \frac{y = f(x)}{(1, -1)} + $			
where the g	gradient was positive – fit ?	$-\underbrace{\begin{pmatrix} \mathbf{x} \\ (-1, -1) \end{pmatrix}}_{(-1, -1)} + + + -\underbrace{\begin{pmatrix} \mathbf{x} \\ -1 \end{pmatrix}}_{(-1, -1)} + + +$			

Unit 1 - 3.2	Using Differentiation							
Finding Stationar nature	y points and their	Example: Find the stationary points of $y = x^3 + 3x^2 - 9x + 1$ and determine their nature.				nts of $y = x^3 + 3x^2 - 9x + 1$ ture.		
 Differentiate to fit For a stationary p	nd the gradient function oint, dy/dx or $f'(x) = 0$	Differenti	iate to	get:	$\frac{dy}{dt}$	$=3x^{2}$	$x^{2} + 6x$	-9
• Solve the equation	n to find the x co-ordinate(s)		dv		dx	a 2	. (
• Substitute into the	e original equation y = or	For a s.p.	$\frac{dx}{dx}$	=0	so	$3x^{-}$	+6x	$-9 = 0$ or $x^2 + 2x - 3 = 0$
f(x) = to get the y	co-ordinate(s)	hence (x	- 1)(x	(+ 3)	= 0	sc	s.p.	occur when $x = 1$ or $x = -3$ = 1. $y = (1)^3 + 2(1)^2$ $y(1) + 1 = 6$
• Determine the nat using a table of si example.	gns as shown in the	So station	y CO-0	ointa	ares (1	v V	when x	$= -3 y = (-3)^3 + 3(-3)^2 - 9(-3) + 1 = 28$
When checking f	for the nature – use any	Now abo	iary p	thair	are (1	.,0)	and th	(-3, 20)
factorisation (that you have for $\frac{dy}{dx}$	Now chec		2	hature	1		e factorisation in dy/dx
If you try to deduce t	the signs from a complicated	А	\rightarrow	-3	\rightarrow	1	\rightarrow	
expression, you w	vill probably get it wrong.	(x-1)	-	\downarrow	-	\downarrow	+	
In each case you are lo right of th	ooking either to the left or the e stationary point.	(x+3)	-	\downarrow	+	\rightarrow	+	
Minimum S.P.	. have signs: $-0 +$	$\frac{dy}{dx}$	+	0	-	0	+	
Maximum S.P	P. have signs: $+0-$						/-	- <u> </u>
Points of Inflexion ha	we signs: $-0 - \text{ or } + 0 + 0$						m	nax min
		Hence sta	ationa	ary po	oints a	re:	(1, 6)	minimum and (-3, 28) maximum
The interval on w increasing or decr	hich the function is reasing.	In the ab	ove	exam	ple:			
To determine the interior is increasing or decret the stationary points side of them.	erval on which the function easing, you need to look at and the gradient on each	The function is increasing for: $x < -3$ and $x > 1$ and decreasing for: $-3 < x < 1$						
Where the gradient is	s positive , the function is increasing .	You need the stationary points to determine the length of the interval.						
Where the gradient is	s negative , the function is decreasing .							
Where the gradient is then	s zero , the function is stationary!							
Maximum and mi	inimum value on a	To deter	mine	the n	naxim	um a	and m	inimum value on a closed interval:
closed interval		• Fir	nd the	stati	onary	poin	ts of th	ne function
If a closed interval is the maximum and m function will either b one of the end point	specified for a graph, then inimum value of the be at a stationary point OR s of the graph.	 If any lie outside the interval, discard them Check the S.V. of each stationary point (i.e. y co-ordinate) Check the value of the function at each end of the interval. State the maximum and minimum value of the function on this interval. 					discard them ary point (i.e. y co-ordinate) n at each end of the interval. num value of the function on this interval.	
		Example	: Fin	d the	maxin	num	and m	inimum value of $y = x^3$ on [1, 3]
		$\frac{dy}{dx} = 3x^2$		for a	S.P.	$\frac{dy}{dx} =$	= 0 5	so $3x^2 = 0$ hence $x = 0$ (outside of interval)
		Now chec	ck end	ls of i	nterva	d [1	, 3]	y(1) = 1 and $y(3) = 27$
		Hence on	the i	interv	al [1,	3],	$y = x^3$	has max value of 27 and min value of 1

Г

Unit 1 - 3.2 Using Differentiation	
Curve sketching	Detailed explanation:
 A practical application of maximum and minimum. Points of intersection with x and y axes: Find stationary points using differentiation Find y co-ordinates by substitution Nature of S.P. using table of signs. Behaviour for large values of + and - x Any useful points on the graph. Sketch (DO NOT PLOT) the graph. 	Find points of intersection with x and y axes: for intersection with y axis ~ put x = 0 for intersection with y axis ~ put y = 0 and solve the equation. Find the stationary points and their nature Differentiate and put dy/dx = 0, solve the equation to get x co-ordinates Substitute into original equation to get y co-ordinates Determine nature of stationary point(s) using table of signs. Behaviour for large positive and negative x Look at behaviour of the graph for large values of positive and negative x Approximate – what does the curve behave like e.g. $y = x^3 + 2x + \frac{1}{x}$ behaves as x^3 for large x and $\frac{1}{x}$ as $x \to 0$ Consider any other particular points on the graph. e.g. $x = 0$ or $x = 1$ (say)
Problem solving	Example:
 Mathematical modelling. Use constraints to make an equation. Look for a maximum or minimum. Method: Make an equation to represent the model – you will have two unknowns at this stage. Your constraint will connect these two unknown variables. Using your constraint, obtain a function with only one variable. Differentiate and find any stationary points – generally there will only be one. Find the nature of the stationary point (max or min) using table of signs. The value of stationary point will cause the model to have a maximum or minimum value. Interpret your solution into the form of the question. 	A rectangle has length x cm and breadth y cm and perimeter p cm. Its area is 100 cm ² . Find the length and breadth of the rectangle with the smallest perimeter. Solution: Since we want to find the smallest perimeter, we need an expression for the perimeter. P = 2x + 2y This is our model with two unknowns. We now need to use the constraint to reduce it to one unknown. Area = xy 100 = xy so $y = \frac{100}{x}$ now replace y in our equation for P $P = 2x + \frac{200}{x}$ we want to find a value for x to make perimeter P a minimum. $P = 2x + 200x^{-1}$ differentiating $\Rightarrow \frac{dP}{dx} = 2 - 200x^{-2}$ For a s.p. $\frac{dy}{dx} = 0$ hence $0 = 2 - \frac{200}{x^2} \Rightarrow 2x^2 = 200 \Rightarrow x^2 = 100$ so $x = +10$ or $x = -10$ (this last solution is not possible, so discard it). hence our S.P. is when $x = 10$. Using our constraint, we find that $y = 10$ also. We should verify that this is a minimum by using the table of signs.
Rate of Change	Velocity and acceleration
The rate of change of y with respect to x is given by: $\frac{dy}{dx}$ Negative rate of change means function is decreasing Positive rate of change means that it is increasing.	A point P moving along the x axis has a displacement x (OP) from the origin O at time t. We can model this as: $x = f(t)$ The velocity of the point P is the rate of change of its displacement x at time t, given by $v = \frac{dx}{dt}$ The acceleration of P is the rate of change of its velocity v at time t, given by: $a = \frac{dv}{dt}$
Note: When using velocity and acceleration rem	nember that they are vectors and have direction as well as magnitude.
When using them vertically as in height	problems, the greatest height reached is when the velocity = 0

When the **acceleration = 0**, the object is moving at **constant velocity.**

Unit 1 - 4	Sequences		
Formula for n th term			
Given a formula for the n th term, we can calculate all the terms.		e.g. $u_n = 3$ start with n	3n + 2 = 1 giving $u_1 = 5$, $u_2 = 8$, $u_3 = 11$ etc.
Conversely given a sequence, we can find a formula for its n th term.		e.g. 5, 9, 1 It goes up i so start off However it So the nth t Now check	3, 17, 21 n multiples of 4 (we add 4 on each time) with $u_n = 4n$ is not the 4 times table – it is offset by 1 more term is given by $u_n = 4n + 1$ to see if this generates the sequence.
Recurrence Relat	ions		
If we are given the first term of a sequence and a rule for calculating u_{n+1} from u_n , we can calculate all of its terms. The recurrence relation is the rule for calculating the $n+1$ th term from the n th term.		e.g. If the return in the If the 2 nd te	recurrence relation is $u_{n+1} = u_n + 7$ all this means is:- add 7 to the any sequence to get the next term in the sequence. rm is 12 i.e. $u_2 = 12$ then $u_3 = u_2 + 7$ or $u_3 = 12 + 7 = 19$
		In general - the terms of	given the first term and the recurrence relation, we can generate all f the sequence:
			5 and $u_{n+1} = 2u_n + 3$ enerate the sequence: 5, 13, 29, 61,
		Conversely term and th	, given the sequence, it may be possible to define it by giving the first e recurrence relation (the relationship between u_{n+1} and u_n).
		e.g. 13, rule is: sul	10, 7, 4, first term is 13 btract 3 to get next term. so: $u_1 = 13$ $u_{n+1} = u_n - 3$
Forming recurrer modelling a real-l	nce relationships ife situation.	Example:	A mushroom bed has 60 mushrooms. Each morning the number has doubled, and the gardener picks 50 mushrooms.
		Eventela	Start from day n – there are u_n mushrooms Look at the next day - there are twice as many $2u_n$ but the gardener has picked 50 so there will be $2u_n - 50$ mushrooms. So: $u_{n+1} = 2u_n - 50$
		Example:	He plants 2 more trees each day for the next 6 days. Take u_n trees to be the number of trees after n days, (This means that that original number of 3 trees is $u_0 \sim u_0 = 3$) Then: $u_{n+1} = u_n + 2$
Linear Recurrence	Relations		
These are of the form	These are of the form: $\mathbf{u}_{n+1} = \mathbf{m}\mathbf{u}_n + \mathbf{c}$		with $y = mx + c$).
Special sequences are obtained if $m = 1$ or $c = 0$		if m = 1 you if c = 0 you	u get an arithmetic sequence ou get a geometric sequence
Arithmetic Sequences			
If $m = 1$ in the recurrence relation $u_{n+1} = mu_n + c$ then $u_{n+1} = u_n + c$		the differen This is an a We are just	ce between successive terms in the sequence is the constant c. rithmetic sequence. adding on c each time.
		e.g. $u_{n+1} =$ if $u_1 = 3$ th	$u_n + 2$ en the sequence generated is 3, 5, 7, 9,
		Note the co	nstant 2 being added on for each successive term.

Unit 1 - 4	Sequences		
Geometric Sequences			
If $c = 0$		In other words the ratio of successive terms is constant.	
in the recurrence relation $u_{n+1} = mu_n + c$		This is an geometric sequence. We are just multiplying by meach time	
then $\mathbf{u}_{n+1} = \mathbf{m}\mathbf{u}_n$		$\frac{1}{2} = \frac{1}{2} = \frac{1}{2} + \frac{1}$	
~ each term is multi	plied by a constant m	e.g. $u_{n+1} = 5u_n$ if $u_1 = 2$ then the sequence generated is 2, 6, 18, 54,	
Examples of Geor	netric Sequences		
Example 1:			
Every year a typical price by 5%. Its initia	bag of groceries rises in al value V_0 is £20	Current years price is 5% more than last year	
Describe the price by	a recurrence relation.	$V_{n+1} = 1.05V_n$ and $V_0 = 20$	
Example 2:			
There are 40 fish in a pond, 10% are eaten but 3 new ones are born every day.		If 10% are eaten then 90% are left for the next day The recurrence relation is $u_{n+1} = 0.9u_n + 3$ where $u_0 = 40$	
Describe this by a re-	currence relation.	(u_0 in this case because it is an initial condition).	
Example 3:			
A sequence is generated at the pth term	ted by the recurrence	The sequence generated is: 2, 6, 10, 14,	
$u_{n+1} = 4u_n - 2$ $u_1 =$	2	Note that a term u_0 would not make sense in this example.	
When expressing a recurrence relation – write down the relation AND the first term u_0 or ul as appropriate.		In general u_0 is an initial condition before the recurrence relation starts. u_1 is the first term of the recurrence relation. Effectively it depends upon how you define u_n	
Examples forming recurrence relations:			
u_n is the number of bacteria in a culture after n hours. At present there are 100 but their number doubles after each hour.		$u_{n+1} = 2u_n$ $u_0 = 100$	
An office plant is 150cm tall and its height increases each month by 5% of its height at the beginning of the month.		$H_{n+1} = 1.05u_n$ $H_0 = 150 \text{ cm}$	
Jim is a salesman, travelling 300 km per week. His mileometer reads 9350 when he begins R_n is the reading after n weeks.		$R_{n+1} = R_n + 300$ $R_0 = 9350$	

Unit 1 - 4	Sequences	
Finite and Infinite Sequences A finite sequence has a finite number of terms – there are a fixed number of terms in the sequence. An infinite sequence has an unlimited number of terms, they continue on forever. If the n th term tends to a limiting value as n gets very large (i.e. n tends to infinity $n \rightarrow \infty$) the sequence is convergent – it converges to a limit.		Examples: 1. $u_n = 2 - \frac{1}{n^2}$ as $n \to \infty$ $\frac{1}{n^2} \to 0$ and so $u_n \to 2$ 2. $u_n = 1 - (0.5)^n$ as $n \to \infty$ $(0.5)^n \to 0$ and so $u_n \to$ 3. $u_n = \frac{2n+1}{n}$ we need to re-arrange this to: $u_n = \frac{2n}{n} + \frac{1}{n} \Rightarrow u_n = 2 + \frac{1}{n}$ and as $n \to \infty$ $u_n \to 2$ 4. $u_n = \frac{n}{n+1}$ slightly trickier here the following technique is useful: the denominator n may be written as $n = n + 1 - 1$ so we get: $u_n = \frac{n+1-1}{n+1} \Rightarrow u_n = \frac{n+1}{n+1} - \frac{1}{n+1} \Rightarrow u_n = 1 - \frac{1}{n+1}$ and so as $n \to \infty$ $u_n \to 1$
The Geometric Sec If a geometric sequery where r is the multip and $u_1 = a$ (the first r {we call r the comm We can write the seq a, ar, ar ² , ar ³ , Define the sum to n to $S_n = a + ar + ar^2$ Then: $S_n = \frac{a(1-r^n)}{(1-r)}$ If -1 < r < 1 as and so the sum S_n with The limit of S_n as n	equence nce is written $u_{n+1} = ru_n$ lier each time term) non ratio} quence out as: ar^{n-1} (n th term) terms, S_n as $+ ar^3 + \dots + ar^{n-1}$ $\frac{r}{2}$ $an \to \infty r^n \to 0$ Ill tend to a limit. $\to \infty$ will be $S_n = \frac{a}{1-r}$	Can we find an expression to allow us to calculate S_n easily ? This time we use a different technique. Multiply the series by r, giving us: $rS_n = ar + ar^2 + ar^3 + \dots + ar^n$ Now subtract this series from the original one, term by term, $S_n - rS_n = a + ar + ar^2 + ar^3 + \dots + ar^{n-1}$ $- \{ ar + ar^2 + ar^3 + \dots + ar^n \}$ Notice that all the underlined terms cancel out, leaving us with: $S_n - rS_n = a - ar^n$ which we can factorise as $S_n(1-r) = a(1-r^n)$ re-arrange to get: $S_n = \frac{a(1-r^n)}{(1-r)}$ a is the first term and r is the common ratio .

Unit 1 - 4	Sequences		
The linear recurrence relation $\mathbf{u_{n+1}} = \mathbf{mu_n} + \mathbf{c}$ with $m \neq 1$ and $\mathbf{c} \neq 0$			
Example:			
A loch contains 10 tonnes of toxic waste. Tidal action removes 50% of the waste each week, but a local factory discharges 8 tonnes of waste into the loch at the end of each week. u_n is the amount of waste in the loch after n weeks.		The recurrence relation modelling this is: $\mathbf{u}_{n+1} = 0.5\mathbf{u}_n + 8$ $\mathbf{u}_0 = 10$ If we write down the first few terms in the sequence we find: $\mathbf{u}_0 = 10$, $\mathbf{u}_1 = 13$, $\mathbf{u}_2 = 14.5$, $\mathbf{u}_3 = 15.25$, $\mathbf{u}_4 = 15.625$, $\mathbf{u}_5 = 15.8125$ It seems to be levelling off at 16 tonnes.	
In general:		Limits : If $-1 < m < 1$ then u_{n+1} and u_n will each tend to a limit L	
For a recurrence relation $\mathbf{u}_{n+1} = \mathbf{m}\mathbf{u}_n + \mathbf{c}$ Provided m is a fraction i.e. $-1 < \mathbf{m} < 1$ then a limit L exists and we can replace \mathbf{u}_{n+1} and \mathbf{u}_n by L L = mL + c re-arranging gives L - mL = c hence L(1 - m) = and so $L = \frac{c}{1-m}$		So in $u_{n+1} = 0.5u_n + 8$ we can say $L = 0.5L + 8$ and so $L - 0.5L = 8$ $L(1 - 0.5) = 8$ $L = \frac{8}{1 - 0.5} \implies L = \frac{8}{0.5}$ $L = 16$ as deduced above.	
This is an important result.			
Examples:			
A mushroom bed has 1000 mushrooms ready for picking. Each morning 60% of the crop are picked. Each night another 200 are ready for picking. Let M_n be the number ready for picking after n days. Write down the recurrence relation, find the limit of the sequence explaining what it means in the context of this question.		Recurrence relation: $M_{n+1} = 0.4M_n + 200$ (60% picked $\Rightarrow 40\%$ left) multiplier m is a fraction so a limit exists i.e. M_{n+1} and $M_n \rightarrow L$ So $L = 0.4L + 200$ $L - 0.4L = 200$ $0.6L = 200$ $L = 333.33$ In the long term, the number of mushrooms ready for picking will settle out at around 333. (In this case it will drop down to 333 since the initial condition was 1000 mushrooms).	
Example:			
Dr Sharma is studyin Every minute 10% of and 30 birds return. I birds in the flock at t Write down the recurre the sequence explaining of this question.	ing a flock of 200 birds. If the birds leave the flock Let B_n be the number of the end of minute n. Ence relation, find the limit of g what it means in the context	Recurrence relation: $B_{n+1} = 0.9B_n + 30$ (10% leaving $\Rightarrow 90\%$ left) multiplier m is a fraction so a limit exists i.e. B_{n+1} and $B_n \rightarrow L$ This time we will use the result: $L = \frac{c}{1-m}$ and so $L = \frac{30}{1-0.9}$ L = 300 In the long term, the number of birds in the flock will settle out at around 300 (In this case it will rise to 300 since the initial condition was 200 birds)	
It is important to be year	ry careful in how you phrase	Evample	
an answer to the common question: "Explain what the limit means in the context of this question"		Consider the recurrence relation: $u_{n+1} = 0.5u_n + 100$ and $u_0 = 500$ Limit will be: $L = \frac{c}{1-m}$ and $L = \frac{100}{1-0.5}$ $L = 200$	
The safest wording is that "The number of will settle out at around"		in this case the sequence drops down to this limit.	
 Since it will never only achieved whe If you do not know you do not know w decreasing down to the limit. If the multiplier is will oscillate on bo 	actually get there (the limit is n n is infinite) the initial condition, then the the sequence is the limit or increasing up to negative, then the sequence th sides of the limit	If we have $u_{n+1} = 0.5u_n + 100$ and $u_0 = 50$ i.e. the initial value is 50 then the sequence would rise up to the limit. In all cases: Think through the implications of the questions, these are practical examples modelling real-life situations.	
will oscillate on both sides of the limit.		The second rout has broughtened	